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Abstract 
The theoretical basis for the integration of direct 
methods into the single-wavelength anomalous dis- 
persion technique is reexamined. The analysis shows 
that the approximations responsible for the ability to 
obtain unique estimates of the two- and three-phase 
structure invariants [Hauptman (1982). Acta Cryst. 
A38, 632-641; Giacovazzo (1983). Acta Cryst. A39, 
585-592] or twofold estimates of the three-phase 
structure invariants [Kroon, Spek & Krabbendam 
(1977). Acta Cryst. A33, 382-385] are also responsible 
for the substantial errors observed in the applications. 
It is shown that, in the general case, the method of 
joint probability distributions leads to twofold esti- 
mates of the two-phase invariants hnd eightfold esti- 
mates of the three-phase invariants. Finally, it is 
shown that more accurately determined three-phase 
invariant estimates can be obtained by the use of 
anomalous scatterer substructure information, when 
available, and the use of a strategy that recognizes 
cases in which the eight estimates are clustered around 
one or two values. These cases are then distinguished 
from those where the eight estimates are widely scat- 
tered by a weighting function. 

1. Introduction 
It has been known for some thirty years that structure 
amplitude differences due to anomalous scattering 
can be used to obtain phase information. Reviews 
on the various proposed phasing techniques based 
on this approach can be found in several publications 
(Ramaseshan & Abrahams, 1975; Sayre, 1982; 
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Ramachandran, 1964). Until recently, it was gen- 
erally believed that, as in the single isomorphous 
replacement case, the single-wavelength anomalous 
dispersion experiment could yield only estimates of 
phases bearing a twofold ambiguity. Using the 
method of joint probability distributions, Hauptman 
(1982) and, subsequently, Giacovazzo (1983) 
obtained formulae which give unique estimates of the 
two-phase and three-phase structure invariants and 
thus unique estimates of the phases themselves. These 
results differ from those reported by Kroon, Spek & 
Krabbendam (1977), who obtained an estimate of the 
three-phase sine invariant, which implies of course 
twofold ambiguity in the estimate of the invariant 
itself. 

While there is, at the moment, a substantial theo- 
retical base for the integration of direct methods into 
the anomalous dispersion phasing technique, a num- 
ber of points remain unclear. Firstly, the reasons why 
the one approach yields unique estimates of the 
invariants while the other results in a twofold 
ambiguity are not well understood. Secondly, in the 
initial applications made by Hauptman (1982) and 
Giacovazzo (1983), large errors persist in the invariant 
estimates, even when the calculations are done using 
error-free data. In addition, as noted by Giacovazzo 
(1983), the formulae tend to underestimate systemati- 
cally the variance of the distributions. This suggests 
the presence of systematic errors in the proposed 
formulae and thus suggests that better estimates can 
be obtained once the errors are characterized and 
corrected. 

In the present paper, the theoretical bases used by 
Hauptman (1982), Giacovazzo (1983) and Kroon, 
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Spek & Krabbendam (1977) are reexamined. The 
analysis shows that both approaches used approxima- 
tions which are responsible for the ability to obtain 
unique or twofold estimates, but are also responsible 
for the large errors observed. It is shown that, in 
general, an eightfold ambiguity remains in the esti- 
mate of the three-phase structure invariants. Finally, 
a strategy is proposed for the use of the eightfold 
estimated three-phase invariants. 

2. Estimation of structure invariants by 
the method of joint probability distributions* 

2.1. The probabilistic theory of the two-phase structure 
invariant 

For a structure containing atoms that scatter 
anomalously, the structure factors Fn and F~a, associ- 
ated with an acentric reflection H, generally have 
different amplitudes and phases. The well known 
diagram showing the relationships among the com- 
ponents of these structure factors is reproduced in 
Fig. 1, where 

FH= F h +  F~I~ (1) 

and 

Fh  = FRI~+ FX~I, (2) 

and where FRn is the contribution from the non- 
anomalously scattering atoms, F~,n is the contribu- 
tion from the real part of the atomic scattering factors 
of the anomalously scattering atom, and F~u is the 
contribution from the imaginary part of the atomic 

*The distributions obtained by Hauptman (1982) and 
Giacovazzo (1983) are identical. Any references to the results of 
Hauptman apply as well to the results of Giacovazzo and vice 
versa. Throughout this section we shall use Hauptman's notation. 

scattering factors of the anomalously scattering 
atoms. 

Once the substructure of the anomalously scatter- 
ing atoms has been determined, the components F~m 
and F~,H can be calculated. This information, together 
with the measured amplitudes I Fnl and [FAI, leads to 
estimates of the phases of the structure factors FH, 
Fh and Fa, Fh bearing a twofold ambiguity, as shown 
in Fig. 2. The solutions 1 and 2 are enantiomorphic 
with respect to the F~1 vector, and 1 and 2 are 
enantiomorphic with respect to F~,T. 

The reported conditional probability distribution 
for the two-phase structure invariant 

~t '--  ~ H  "[- ( ~ 1  , (3) 

given the two normalized structure-factor magnitudes 

IE.I and IE,~l (4) 

of Hauptman (1982) and Giacovazzo (1983), is uni- 
modal, yielding, thus, a unique estimate of the 
invariant ~. This result is unexpected since the ability 
to estimate uniquely the value of ~ is in fact equivalent 
to the resolution of the phase ambiguity from the 
magnitudes IEH[ and [E~I alone. This can be easily 
seen :n Fig. 2. The sum of the phases ¢ H + ~  for the 
first solution is 

,p.+ wi =/3~+/3~ (5) 

and for the second solution 

~pn+ ~ =/32+/3~. (6) 

While the sums, fl~+fli and /32+/3~, have the same 
magnitude, they always have opposite signs owing to 
their enantiomorphic relationship. In one of the so- 
lutions, F and F have a phase advance with respect 

a 
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Fig. 1. Argand diagram showing the relationships among the com- 
ponents of the structure factors for the reflections H and I71. 
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F~ 
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Fig. 2. The twofold ambiguity in the single-wavelength anomalous 
dispersion case. 
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to F '  and /~ '  while, in the other solution, they have 
a phase lag. It is thus surprising that a unimodal 
distribution can be obtained for the invariant ~H + ~ ,  
as it suggests that the sign ambiguity can be resolved 
from the magnitudes alone. This observation led us 
to a reexamination of the distribution so as to gain 
an understanding of this unexpected result. 

The unimodal distribution gives the estimate 

~'n+ q ~ "  --~, (7) 

provided that the variance of the distribution is small. 
The angle ~ is calculated using 

tan ~ = -- Sn/  Cn, (8) 

where 

N 

Ca = (1 /an)  ~ Ifml 2 COS 2 8ja, (9) 
j = l  

N 

S n = ( 1 / a n )  Y. Ifml =sin28jn, (10) 
j = l  

N 

,~.= E Ifj.I 2, (11) 
j = l  

N = number of atoms in the unit cell, (12) 

and the atomic scattering factor fjH is expressed in 
the form 

fjH = IfjH] exp ( i3 jH ) . (13) 

For a fictional monatomic structure in which the 
one atom scatters anomalously, there is no ambiguity 
in the sign of the sum ~0H + q~. For such a structure 
we have 

~PH+ gha = 3H+ ~I = 23H, (14) 

SH = sin 23H, (15) 

CH = COS 23H, (16) 

and the angle ~: is uniquely and correctly defined. 
When the structure contains more than one atom, 

the cosine and sine terms, used for the calculation of 
~:, are a weighted sum of the contributions from each 
of the individual atoms [(9) and (10)]. This estimate, 
however, is correct only for the case of a reflection 
for which the individual atoms' contributions to the 
structure factor, from the real part of their atomic 
scattering factors, all have the same phase angle. 
Physically this implies that all the atoms are scattering 
in phase, i.e. that all the atoms lie in the same plane. 
It is for this special case, and this case only, that a 
unique estimate of s ~ can be obtained. The unimodal 
property of the distribution is therefore a result of an 
approximation which is not valid in general. This 
approximation leads to a poor estimate of ~:, and, in 
particular, does not provide any information on its 
sign. From (9) and (10), it can be seen that, since 8SH 
is positive and generally small, both Cn and Sn are 

positive, and thus ~ is negative. It is therefore 
implicitly assumed that the sum ~n + ~a has a positive 
value. From Fig. 2, it can be seen that the solution 
for which the sum ~ri + ~ has a positive value corre- 
sponds to the solution for which the phase angles are 
closest to the anomalous scatterer substructure phase 
angles. 

The notation used by Giacovazzo (1983) is different 
from that of Hauptman (1982). In Giacovazzo's nota- 
tion, the unimodal distribution gives the estimate 

where 

~ H + q ~ = q  (17) 

tan q = (72/C1. (18) 

It can be easily shown that C1 and (22 correspond 
exactly to Ca and Sn. 

2.2. The probabilistic theory of  the three-phase structure 
invariants 

Owing to the breakdown of Friedel's law, for a 
triplet of reciprocal-lattice vectors, H, K, L, satisfying 

H + K + L = 0 ,  (19) 

there exist eight three-phase structure invariants 

@o = ~Prl + ~K + ~L, 

~bl = - g~a + ~K + ~PL, 

@2 = ~H-- thZ + ~r, 

~ba = ~n + ~K-- ~ ,  
¢ ~ = ~ + ~ + ~ ,  

= --~On+ ~ +  q~, 

= ~ha- ~K + ~_., 

~3 = ~ a +  ~ - -  ~L. 

(20) 

The conditional probability distributions of each of 
the three-phase structure invariants, given the six 
magnitudes IEHI, IEKI, lULl, IEal, levi, lEd, have been 
derived by Hauptman (1982) and Giacovazzo (1983). 
The distributions obtained are unimodal, thus leading 
to unique estimates of the invariants in the interval 
0 to 360 °, and therefore unique estimates of the phases 
themselves. 

These distributions have the form 

Pj = Pj( f2j I R1, R2, R3, RT, R~, R]) 

Pj = (1/Kj) exp {Aj cos (Oj - w j)}, 

j = 0, 1, 2, 3, 0, 1, 2, 3, (21) 

where the normalizing constant, Kj, is defined by 

Kj = 2 "rr lo ( Aj ) (22) 
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and where 

R, = IE.I,  RE--IE,,I, R3 = lu l l ,  
(23) 

Ri = lEft[, g~--- levi, g~ -- lEd. 

From (21) it follows that when the variance of the 
distribution is small, i.e. when A~ is large, a reliable 
(and unique) estimate of ~, 

~ = to~, j = 0 ,  1, 2, 3, 0, 1, 2, 3, (24) 

is obtained. In the initial applications made by Haupt- 
man (1982) and Giacovazzo (1983), it was seen, 
however, that although unique estimates were 
obtained substant~,l errors persisted, even when the 
calculations were done using error-free data. The 
magnitude of the errors was not well predicted, as 
the variance of the distributions was systematically 
underestimated. In order to locate the source of these 
systematic errors, the distributions were reexamined. 

As an example, we consider the distribution of the 
~0 invariant, although the discussion may be applied 
to any of the eight distributions. The conditional 
probability distribution of fro is given by 

Po=(1/Ko)exp{Aocos(Oo-tOo)} ,  (25) 

where 

Ao=2Bo/[(1-X~)(1-X2)(1-X2)], ( 2 6 )  

Bo = [B~oc+ B2s] '/2, ( 2 7 )  

tOo = tan- '  (Bo,/Bo~), (28) 

Boc = Zo{ R 1 R 2 R 3 cos ~0 + Ri  R~Rg r t r 2 r3 cos (~:t + ~:2 + ~:3 + ~'0)} 

+ ZI{RiR2R3r ~ cos (~:t - ~ )  + RtR~R~r2r3 cos (~2 + ~:3 + ~'~)} 

+ Z2{R ~ R~R3r 2 cos (~:2 - ~'2) + RIRzRsr~ 7"3 cos (~:, + ~:3 + ~'z)} 

+ Za{RtR2R~r 3 cos (s¢3 - ~3) + R~R~Rart r2 cos (~:t + ~:2 + ~'3)} 

(29) 

Bo~ = Zo{ g~ g 2 R3 sin ~0 - R~ R~ R~ ' t  r 2 ~ sin ( ~  + ~2 + ~ + ~0) } 

- Zt{RIR2R3z ~ sin ( ~  - ~l) + RtR~R~r2z3 sin (~2 + ~ + ~ )}  

- Z2{Rt R~R3z2 sin (g2 - ~2) + RiR2R~rl ~3 sin ( ~  + ~ + ~2)} 

- Z3{RtR2R~r ~ sin (~:3 - ~3) + R~R~R3r~z2 sin (~l + ~2 + ~)} .  

(30) 

All the terms used for the computation of Bo~ and 
Bo~ are defined in the publication of Hauptman 
(1982), to which the reader is referred. Only the terms 
pertinent to the present discussion will be restated. 

The X~ and ~ terms, appearing in (26), (29) and 
(30), are defined by 

X1=(C2-~ $2) 1[2, tan ~ = ( - S n /  Cn), (31) 

X2 = ( C 2 +  $2) wE, tan ~2 = ( -St , /C~) ,  (32) 

X3 = ( C 2 +  $2) wE, tan ~:3 = (--SL/CL), (33) 

where Ca and Sn are defined by (9) and (10). In view 
of the discussion presented in § 2.1 it is clear that 

significant errors are made in the computation of X~ 
and ~:~ and these account, in part, for the errors 
observed in the invariant estimates. In addition, the 
sign of ~:~ cannot be determined by the approximation 
used. In this case, however, the sign ambiguity is 
implicitly contained in the distribution, in the form 
of the r terms. 

I,[ 2R,RrX,/ (1 - X2) ] 

z' = Io[2R,RrX~/ (1 - X2)] ' 
i =  1,2,3, (34) 

where Io and 11 are the modified Bessel functions. 
From equation (2.13) of Hauptman (1982) and from 
Hauptman (1972), it can be seen that zi is the expected 
value of the cosine of the phase sum ¢i + ~pr+ ~:~. The 
equivalent cosine functions can therefore be sub- 
stituted for the r functions in the distribution. 
Let 

cos (~, + ~ +  ~,) =cos ~,, (35) 

and to simplify the discussion, let us assume that 
1~21 = 1~31 =0  and I,~,1 ~ o. 

We then have 

Boc = ZoR1R2R3 cos ~0 + ZlR1R~R~ cos (~2+ ~3 + ~1) 

+ Z2RiR~R3 cos (~2- ~2) 

+ Z3R1R2R~ cos (~:3- ~'3) 

+ 1/2{ZoRTR~R~ [cos (~, + ~ + ~3 + ~o + ~,) 

+cos (¢, + ~:~ + ~:3 + ~'o- a , ) ]  

+ Z 1 R I R 2 R  3 [ c o s  (~1 - ~'1 + ° t l )  

+cos (~:,- ~ , - ,~ , ) ]  

+ Z2RiR2R~ cos (~, + ~3 + ~2 + a,)  

+cos (~:, + ¢~ + ¢'2- ~,)] 

+ Z3RiR~R3 [cos (~:, + ~:2 + ~'3 + a,)  

+cos  (s ¢, + s¢2 + st3 - a,)]} (36) 

Bo, = Zo R, R2 R3 sin ~'0 -- Z~ R ~ R~ R~ sin ( ~:2 + ~:3 + ~ ) 

- Z2RIR~R3 sin (~2- ~,2) 

- Z3R~R2R~ sin (~3- ~3) 

- 1/2{ZoRiR~R~[sin (~  + ~ +  ~ +  ~0+ ~ )  

+sin  (~:~ + ~2 + ~:3 + ~'0- a~)] 

+ Z 1 R I R 2 R 3 [ s i n  ( ~  - ~ + oq) 

+sin  ( ~ - ¢ ~ -  a~)] 

+ ZER~gER~[sin (~  + ~3 + ~2 + a~) 

+sin  (~:~ + ~:3 + ~'2- a~)] 

+ Z3RiR~ga[sin (~1 + ~2 + ~3 + al) 

+sin  (~, + ~2 + ~3- a,)]}. (37) 
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Equations (36) and (37) show that a twofold 
ambiguity is implicitly contained in the distribution. 
Since the sign of t~l is unknown, both signs are 
considered equally probable and their contributions 
are averaged. 

In the general case where I d, la=l and are all 
non zero, there exist eight possible sign combinations 
in the a's. By extension from (36) and (37), it can 
be seen that the use of the z~ functions results in an 
averaging of these eight possible cases and, as a 
consequence, a unique estimate of the invariant is 
obtained. The accuracy of the estimate, however, may 
be poor. In addition, since X~ tends to be nearly equal 
to one, the argument of the Bessel functions (used 
for the evaluation of z~) tends to be large and thus z~ 
itself tends to be nearly equal to one. As a con- 
sequence, the ambiguity in the sign of the ~ is 
removed. As was shown in the previous section, ~ 
generally has a negative sign and, thus, it is implicitly 
assumed that the sum ~oi + ~or has a positive value. 
Substantial errors are made in the invariant estimates, 
particularly when one of the g has a positive sign, 
i.e. when one of the three s u m s  ~0H'~ t- (~TI, ~DK'~ t- ~ or 
~0L+ ~ has a negative value, as shown in Table 1. 

The use of the z functions accounts for the ability 
to obtain a unique estimate of the invariants; it also, 
however, accounts for the substantial systematic 
errors observed. If, instead of using the z functions, 
the ~:~ angles are allowed to take their two possible 
signs, and the distribution is calculated for each of 
the eight sign combinations, eight possible estimates 
of the invariant are obtained. 

As shown in Table 2, large differences may exist 
between the eight estimates. It is thus precisely in 
those cases that the distributions of Hauptman (1982) 
and Giacovazzo (1983) fail to give an accurate esti- 
mate of the invariants. 

3. Estimation of sine invariants from 
geometrical considerations* 

The first results on the use of the integrated direct 
methods-anomalous dispersion technique for the 
estimation of the three-phase structure invariant were 
presented by Kroon, Spek & Krabbendam (1977). By 
extending the method proposed by Peederman & 
Bijvoet (1956), Ramachandran & Raman (1956) and 
Okaya & Pepinsky (1956) to the three-phase structure 
invariant, they showed that three-phase sine in- 
variants can be estimated using 

sin ffhk ([ Zhk[ 2 2 t! 0 - )/4  d hkl, (38) 
where 

h k = h + k + ( - h - k ) ,  (39) 

* Throughout this section, the notation of Kroon, Spek & Krabben- 
dam (1977) is used. Note, in particular, that the quantity represen- 
ted by the z symbol is not related to that of § 2.2. 

(~hk = 1/2(~0hk-- ~r,), (40) 

I~d = I EhllEdlE+d, (41) 

I~1--I~11~11~+d, (42) 
I~°d-- ( 1/211 ~hkl z +l~d 2] - -hkJ'"2"l'l/2. (43) 

The z ° and r~k correspond to the sum of the contribu- 
tions to the EhEkE-h-k vector from the real and 
imaginary parts of the atomic scattering factors. While 

and [7~[ can be calculated from the magnitudes 
alone, the term z~k cannot be calculated directly since 
it depends on the atomic positions. In the method 
proposed by Kroon, Spek & Krabbendam (1977), the 
value of r~k is estimated using 

N 

rgk=(ah~kah+k) -1/2 • [f~(h)f/(k)f~(h+k)[ 
i----1 

where 

×sin (2~r[8,(h) + 8,(k) + 8i(h+ k)]}, (44) 

N 

E If,(h)l 2 (45) 
i----1 

and similarly for ak and 0Oh+ k. 
The atomic scattering factor f~(h) is defined as 

f~(h) = If,(h)l exp [2~rig,(h)]. (46) 

The nature of the approximation used can be 
understood by considering the imaginary part of the 
product of the normalized structure factors 
EhEkE-h-k. Let 

= led exp (2"rri oh). (47) 

The imaginary part of the triple product E h E k E _ h _  k is 

"l'im - - I ~ h l  I kl I -h-d sin [2~r(~h + ~0k + ~0-h-k)]. (48) 

According to the notation used in § 2.1, equation 
(5), we define 

~0k = ~0~,+ flk (49) 

~ - - h - - k  = ~ t-'-h--k "31-/~--h--k 

and 

"l'im --~ I EhllEkllE-h-kl 
! ! l x sin [2~r(~0h + Ck + ~0--h--k + Bh +/3k + 13--h--k) ]. 

(50) 
For a monoatomic structure in which the one atom 

scatters anomalously, there is no ambiguity in the 
signs of the fl~, ilk, /3-h-k angles. The structure-factor 
magnitudes IEhl, IEkl and IE-h-kl are equal to one 
and, since the atom is by necessity located at the 
origin, the angles ~o~,, ~0~, and ¢'-h-k are equal to zero. 
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Table 1. Ten representative estimates of the structure invariants Oj for the PtC12- derivative of cytochrome C55o 
obtained using Hauptman" s (1982) distributions 

Est imated  True  value 
IEHI I ~ 1  IEKI I ~ 1  lULl I~1  Aj value o f  ~j (o) o f  ~j (o) 

1"91 2"06 1"57 1"41 1-20 1"08 8"02 84 14 
1"81 1"93 1"11 0"97 1"41 1"57 7"16 -61 -16 
1"98 2"07 1"91 2"06 1"20 1"08 5"48 -51 -164 
2"36 2"48 1"56 1"69 0"82 0"68 4"52 52 2 
1"34 1"48 1"34 1'22 1"25 1"16 3"76 -72 -126 
1"85 1"94 0"85 0"67 0"78 0"92 4"21 56 42 
2"17 2"04 0"92 1"04 0"86 0"70 4"10 146 148 
1"39 1"28 0"85 0"67 0"87 0"75 4"02 -72 -68 
1"88 1"98 1"28 1"15 0"85 0"67 3"87 104 96 
1"56 1"69 1"41 1"57 0"98 0"90 3"72 73 78 

Es t imated  
signs o f  True  signs of  

~1 ~2~3 
+ 
__ ..[- __ 
+ + -- 

+ 
+ 

Table 2. Estimates of the structure invariant d/j as a function of the ~l, ~2 and ~3 signs for the PtC142- derivative 
of cytochrome c550 

IEHI =2 .36 ,  IF~l = 2.48, IEKI = 1.56, IE~l = 1.69, lu l l  = 0.82, lULl =0 .68 .  

Es t imated  value o f  Magn i tude  o f  Es t imated  value o f  Magn i tude  of  
Signs of  0j using the es t imated  the error  @j using the true the error  

~ C2 6 I~,1 magni tudes  (°) (°) I~1 magni tudes  (°) (o) 

+ + + 141 139 132 130 
+ + - 166 164 180 178 
+ - + 94 92 87 85 
+ 119 117 135 133 
- + + 69 67 53 51 
- + - 93 91 100 98 

+* 24 22 10 8 
48 46 57 55 

* Signs corresponding to the true ~:1, st2 and sr3 signs. 

We have, therefore, 

"rim = s i n  [2"n ' ( f lh  + f lk  + r - h - k ) ] .  ( 5 1 )  

In this case/3h = 8(h), and similarly for ~ k  and B - h - k ,  
l/ and we have "rim ~---Thk. 

Equation (44) corresponds to a weighted average 
of the contributions from the individual atoms. This 
approximation is valid only for the special case of a 
triplet h, k, - h - k  for which the individual atoms' 
contributions, from the real part of their atomic scat- 
tering factors, all have the same phase angle. It is 
only in this case that the q~, tp~, and ( ~ t h _  k c a n  be 
neglected and that the/3h,/3k and/3-h-k have a unique 
value. Again, in the general case, there are eight 
possible sign combinations in the/3's  which result in 
an eightfold ambiguity in the determination of ffbk. 
In the method proposed by Kroon, Spek & Krabben- 
dam, (38) corresponds to considering two of these 
combinations, namely ( + + + , - - - ) .  This accounts 
for the twofold ambiguity in the determination of the 
invariant estimates. The method thus should work 
best when the true/3's are either all positive or nega- 
tive. Kroon, Spek & Krabbendam's approach has 
been further refined, in particular in the calculation 
of better estimates of the r~k term (Pontenagel, 1983). 
All of the approximations, however, still yield only 
a twofold estimate of the invariants. In addition, it 
was predicted, and confirmed, by Pontenagel (1983) 
that the method fails for macromolecular structures. 

4. Proposed strategy for the use of eightfold 
estimated three-phase invariants 

It was shown in § 2.2 that there are two main sources 
of errors in the estimates of the three-phase structure 
invariants from the presently available probabilistic 
theory. The first one comes from the inability to 
estimate reliably the magnitudes of the ~: angle terms 
appearing in the formulae; the second one results 
from the fact that, in the distributions, the ~: angles 
are, in general, assumed to have a negative sign. The 
first source of errors can be eliminated easily, once 
the anomalous scatterer substructure has been deter- 
mined. It is then possible to calculate the magnitudes 
of the ¢ angles and to incorporate this information 
into the distributions. Table 3 shows a few examples 
of invariants estimated using the true ¢ angles. For 
the purpose of comparison, the invariants selected 
are the same as those used by Hauptman (1982, Table 
1). From these calculations, it is apparent that a 
remarkable gain in accuracy is obtained by incor- 
porating the true ~: values into the formulae. These 
calculations, however, are of a purely theoretical 
nature. In practical applications, once the anomalous 
scatterer substructure has been determined the magni- 
tudes of the s r angles can be calculated, but their signs 
remain unknown. Thus, in the general case, eight 
possible estimates of the invariant are obtained, one 
of which can be expected to be close to its true value, 
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Table 3. Twenty-one estimates of the structure invariants ~bj sampled from the top 2000 for the PtCI]- derivative 
of cytochrome C55o 

The IEI magni tudes ,  associa ted  with the @j invariants ,  are given by  H a u p t m a n  (1982), Tab le  1. 

Pro tocol  1" Protocol  2 t  

Es t ima ted  Magn i tude  o f  Es t ima ted  M a g n i t u d e  o f  
Serial True  value va lue  o f  ~t the er ror  va lue  o f  ~t the e r ror  

no. o f  ~t (°) At (o) (o1 At (o) (o) 

1 -88 6.92 -58  30 6.16 -86  2 
100 130 5.62 148 18 7.39 138 8 
200 -121 4.83 -79 42 6.77 -113 8 
300 2 4"52 52 50 5"17 10 8 
400 96 4-31 79 17 4"47 97 1 
500 42 4"21 56 14 6"12 46 4 
600 148 4"10 146 2 4"36 157 9 
700 -68 4-02 -72  4 3"95 -69  1 
800 50 3"93 70 20 6"64 54 4 
900 96 3"87 104 8 3"88 93 3 

1000 -138 3"80 -88 50 4"71 -146 8 
1100 -126 3"76 -72  54 6"39 -119 7 
1200 78 3"72 73 5 4"32 58 20 
1300 -124 3"68 -161 37 4"69 -129 5 
1400 -3  3"63 -72  69 5"01 - 2  1 
1500 77 3"59 84 7 2"90 94 17 
1600 -94  3"55 -64  30 4"12 -72  22 
1700 -72  3"51 -64  8 3"50 -60  12 
1800 82 3"46 78 4 5"43 100 18 
1900 123 3"43 63 60 2.44 100 23 
2000 -126 3"42 -96  30 5"22 -132 6 

Av. 27 ° Av. 9 ° 

* In protocol 1, the estimates were obtained using Hauptman's (1982) original distributions. 
t In protocol 2, the true ~Pi + ~Or values were incorporated into Hauptman's distributions from which the Sj estimates were then obtained. 

Table 4. Ten representative estimates of the structure invariantss d/j for the PtC12- derivative of cytochrome C55o 
showing a reduction from an eight- to a twofold ambiguity 

True  value  

[EHI I ~ 1  lEvi I ~ 1  IE, I I~1  Aj o f  ~t (°) 
2.06 1.91 1.61 1.50 0.85 0.67 7.75 -124 
2.04 2.17 0.89 1.03 0.85 0.67 6.27 -87  
0.91 1.04 0.46 0.31 0.26 0.41 5.62 -30  
0"59 0"46 0" 15 0"32 0"41 0"26 5"00 85 
0"15 0"32 0-40 0"24 0"19 0"10 4-80 123 
1"91 2"06 1.42 1"55 1"21 1"10 4"68 -62  
1"39 1.28 0"85 0.67 0.75 0"87 4.08 71 
1"91 2"06 1"81 1'93 1-49 1"37 3"87 -63 
0"46 0"31 0"41 0"26 0'56 0"46 3"46 -68 
0"57 0"41 0"46 0"31 0"41 0"51 3-06 99 

* The value in parentheses corresponds to the maximum difference 

T w o f o l d  
es t imates  o f  Oi (°) 

-132 (3)*, -32  (3) 
-79  (6), -111 (6) 
-43 (13), -139 (13) 

73 (8), 110 (8) 
118 (17), 64 (17) 

-49  (13), -135 (13) 
66 (8), 118 (8) 

-63 (17), -121 (17) 
-66 (12), -108 (12) 
116 (10), 64 (10) 

between the cluster's average and its individual contributors. 

provided that the variance of the distribution is small, 
or the A value is large. Those estimates can be 
obtained easily by calculating the distributions for 
each of the eight possible sign combinations. 

Naturally, invariant estimates bearing an eightfold 
ambiguity are of little or no use in the determination 
of the individual phases. However, while in principle 
eight possible estimates of the invariant are obtained, 
in practice these estimates are often clustered around 
two values. In particular, if one of the ~ angles is 
large as compared to the remaining two, then the 
eightfold ambiguity reduces to a twofold ambiguity 
as shown in Table 4. This suggests a phasing strategy, 
analogous to the one proposed for the single isomor- 
phous replacement case (Fortier, Moore & Fraser, 

1985). The eight possible estimates obtained by calcu- 
lating the distribution for each of the eight sign combi- 
nations are divided into two clusters, and the average 
value for each of the two clusters is calculated. 
Differences between each cluster's average estimate 
and its contributors are computed, and the cosine of 
the largest difference is then used as a weight in the 
estimation of the associated A magnitude, i.e. 

A(av., wtd) = ~ ~ Ai x cos (max. [cluster estimate 

- contributor estimatel), 

i=1 ,2 ,3 , . . . ,8 .  (52) 
In this manner, the A magnitudes obtained reflect 
correctly the accuracy of the twofold invariant esti- 
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mate. The individual phases can then be determined 
from the twofold estimated invariants, provided that 
there exists a redundant set of accurately estimated 
invariants. 

5. Concluding remarks 
The presently available theory for the estimation of 
the three-phase structure invariants, via combined 
direct methods - anomalous dispersion techniques, 
has been reexamined. The analysis shows that these 
techniques do not yield one or two but rather eight 
possible estimates of the invariants. This, naturally, 
appears at first to limit severely the applicability of 
these techniques. Preliminary test calculations indi- 
cate, however, that in many cases the eight possible 
estimates are clustered around one or two values. 
Distinguishing these cases from those in which the 
eight estimates are widely scattered results in a sig- 
nificant gain in accuracy. Extensive calculations, 
based on the strategy described in § 4, are now in 
progress. Their results will be presented in the near 
future. 

Details of the test calculations 
All of the calculations were done using calculated 
diffraction data for the PtC12- derivative of cyto- 
chrome C55o (Timkovich & Dickerson, 1973, 1976). 
The coordinates were obtained from the Protein Data 
Bank (Bernstein et al., 1977). The calculations were 
done on a 16-bit PDP11/23 computer. The programs 
used were written by S. A. Potter and C. M. Weeks 
of the Medical Foundation of Buffalo, Inc., and adap- 
ted by Nancy J. Moore. 

We thank S. A. Potter and C. M. Weeks for making 
their computer programs available to us, and R. H. 
Blessing for his critical reading of the manuscript. 
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Engineering Research Council of Canada and from 
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Abstract 

Crystallographic analysis is applied to a set of elec- 
tron diffraction patterns taken from a rapidly cooled 
Al-Mn alloy to construct reciprocal-lattice patterns 
in agreement with the observed icosahedral results. 
The analysis leads to a proposed atomic scale model 

which is derived from two sets of experimental modu- 
lations, each of which has six independent modula- 
tion vectors. The underlying structure has a lattice, 
the unit cell of which involves 32 atomic sites with 
the required symmetry properties. The appearance of 
the experimental electron diffraction patterns is 
explained either by the coherent arrangement of this 


